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Abstract

In recent years, considerable attention has been given to the development of higher order plate and shell models.

These models are able to approximately represent three-dimensional e�ects, while pertaining the e�ciency of a two-

dimensional formulation due to pre-integration of the structural sti�ness matrix across the thickness. Especially, the

possibility to use unmodi®ed, complete three-dimensional material laws within shell analysis has been a major moti-

vation for the development of such models.

While the theoretical and numerical formulation of so-called 7-parameter shell models, including a thickness stretch

of the shell, has been discussed in numerous papers, no thorough investigation of the physical signi®cance of the ad-

ditional kinematic and static variables, coming along with the extension into three dimensions, is known to the authors.

However, realization of the mechanical meaning of these quantities is decisive for both a proper modeling of shell

structures, e.g. concerning loading and kinematic boundary conditions, and a correct interpretation of the results. In the

present paper, the signi®cance of kinematic and static variables, appearing in a 7-parameter model proposed by B�uchter

and Ramm (1992a) are discussed. It is shown, how these quantities Ôre®neÕ the model behavior and how they can be

related to the ÔclassicalÕ variables, such as ÔcurvaturesÕ and Ôstress resultantsÕ.
Furthermore, the special role of the material law within such a formulation is addressed. It is pointed out that certain

requirements must hold for the variation of kinematic and static variables across the thickness, to ensure correct results.

In this context it is found, that the considered 7-parameter model can be regarded as ÔoptimalÕ with respect to the

number of degrees of freedom involved. Ó 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Higher order shell theory; Three-dimensional material law; Stress-resultants

1. Introduction

1.1. Step back into three dimensions

The ingenious idea of our ancestors using thin-walled structures to project the three-dimensional be-
havior onto a two-dimensional surface was not only a considerable reduction of mathematical expense but
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it also gave the necessary physical insight into the structural response; thus, important phases such as
membrane state, bending edge e�ects or inextensional deformations became apparent. The corresponding
analytical solutions have been intensively investigated, mostly for special cases such as spherical, conical or
cylindrical shells, in general, based on the so-called Kirchho�±Love assumption (Kirchho�, 1850; Love,
1888) neglecting transverse shear deformations. Names such as Reissner, Meissner, Geckeler, Fl�ugge and
many others are related to these theories. Besides this, higher order theories have been developed, including
extra e�ects, for example those of ReissnerÕs (Reissner, 1944) and MindlinÕs (Mindlin, 1951, see also
Hencky, 1947) extensions including transverse shear e�ects. The valuable contributions of Koiter (see e.g.
Koiter, 1960) are milestones on the way to geometrically non-linear shell formulations.

When the ®nite element method became successful in the sixties, it was obvious to apply simply three-
dimensional ÔbrickÕ elements also to plates and shells; a linear displacement ®eld across the thickness (one
node on the upper and lower shell surface, respectively), representing Reissner±Mindlin kinematics, was the
natural choice. The failure of this procedure was attributed to a de®cient representation of the Poisson
e�ect and the large di�erences in sti�ness; only an increase in the number of degrees of freedom across the
thickness could remove the defect. This, in turn, caused an increase in number of elements also in surface
direction and a tremendous expense. Consequently, the ®nite element developers returned to shell for-
mulations, like the Kirchho�±Love theory or ± because of the C0-requirement ± more frequently to shear
deformation theories with ÔReissner±MindlinÕ kinematics (Ahmad et al., 1970; Ramm, 1976; Simo et al.,
1990; Kr�atzig, 1993, among others).

In this article di�erent shell models are distinguished in view of the number of degrees of freedom for
displacements (and strains) involved, see Fig. 1. Thus, the shell theory of the Kirchho�±Love type, making
use of the two in-plane displacements and the transverse de¯ection is called 3-parameter model. If trans-
verse shear e�ects are taken into account (Reissner±Mindlin kinematics), two independent rotations have to
be introduced, leading to a 5-parameter model. Since in Section 2 a two-dimensional beam formulation is
described as a model problem, the corresponding designations are also given in Fig. 1.

It is known that these ÔconventionalÕ shell formulations are not su�cient when
1. large strain e�ects become dominant so that the thickness change has to be considered,
2. three-dimensional constitutive laws should be applied without any manipulation or reduction,
3. three-dimensional e�ects need to be studied, such as local stress concentrations and material failure, del-

amination, etc., or
4. the assumption of a straight director does not physically hold, as in laminates and composites.

Fig. 1. Di�erent degrees of approximation for beam and shell models.
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The obvious extension for the ®rst three requirements is to include the thickness change as the sixth
parameter, leading to a fully three-dimensional set of stresses and strains. However, the mechanical in-
gredients of the 6-parameter model are the same as mentioned for the three-dimensional continuum,
rendering the same problems given above. The main reason is that the resulting linear distribution of the
normal stress S33 in thickness direction is not balanced by the constant strain E33 evolving from this model.
The ÔparasiticÕ linear part of S33 is caused by the linear distributions of E11 and E22 in thickness direction
due to the Poisson e�ect. Thus, Poisson thickness locking occurs in bending dominated cases when Pois-
sonÕs ratio is not equal to zero.

As a remedy, either the linear stress term has to be removed from the constitutive law or the shell
formulation has to be extended by a linear strain term, leading to a 7-parameter model. This extension can
either be achieved directly within a multi®eld variational formulation, as proposed in B�uchter and Ramm
(1992a) (see also B�uchter et al., 1994) and adopted later on by others (Betsch et al., 1996; Eberlein and
Wriggers, 1997), or indirectly within a displacement formulation by a quadratic variation of the transverse
displacement in thickness direction (Verhoeven, 1993; Parisch, 1993; Sansour, 1995; Basar and Ding, 1996).
In both cases, fully three-dimensional constitutive models can be applied without any modi®cation.

Requirement 4 can only be handled by a re®nement of the displacement ®eld in thickness direction. This
can either be achieved in the sense of a Ôp-re®nementÕ, by using higher order polynomials (Naghdi, 1972;
Babuska and Li, 1991; Lo et al., 1977; Schwab, 1996, among others), i.e. a ÔcurvedÕ director, or an Ôh-
re®nementÕ, leading to the so-called multidirector or multilayer models (Epstein and Huttelmaier, 1983;
Reddy 1987; Braun et al., 1994, among others) with layerwise straight (or curved) directors.

From the e�ciency point of view, all these formulations include the key feature of shell analysis, op-
posite to continuum models, namely the explicit integration of the three-dimensional stress state across the
thickness, leading to the so-called stress resultants. However, the term Ôstress resultantÕ may not be adequate
in the case of higher order shell formulations like the 7-parameter model, as will be shown in the sequel.

1.2. Objective

The objective of this article is to investigate the physical signi®cance of the kinematic and static variables
appearing in the 7-parameter model presented by B�uchter and Ramm (1992a). The aim is to provide more
physical insight into the model behavior, which is necessary for a correct model of shell structures and the
interpretation of numerical results. Here, for example the question of correct loading and a proper choice of
boundary conditions are crucial.

In 3-parameter and 5-parameter models, kinematic quantities are membrane strains, curvatures and
transverse shear strains. The energetically conjugate static quantities are the membrane forces, bending
moments and transverse shear forces. Engineers are familiar with the physical signi®cance of these quan-
tities. Due to the additional degrees of freedom in the 7-parameter model, extra kinematic and static
variables show up. This results on the one hand in the approximate representation of certain three-
dimensional e�ects, which are neglected in classical shell formulations without thickness stretch. On the
other hand, it turns out to be a sophisticated exercise to physically classify these higher order e�ects and to
®nd clear, meaningful expressions for them. In particular, for the static variables, the interpretation as a
resultant ÔforceÕ or ÔmomentÕ is not always possible.

Some basic features of these higher order strain and stress variables are explained in Section 2 for a two-
dimensional beam introduced as a model problem. Sections 4 and 5 deal with the discussion of the physical
signi®cance of kinematic and static variables, as well as the corresponding boundary conditions, in the
context of the three-dimensional shell formulation, respectively.

Di�erent from a three-dimensional solid formulation for a ÔresultantÕ shell theory, the thickness enters
the constitutive law. Thus, the slenderness of the shell becomes an important parameter, governing the
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relations between membrane, bending and transverse shear sti�ness. When unmodi®ed, three-dimensional
material laws are applied to shell formulations, it is essential, that kinematic and static variables are
ÔbalancedÕ, which can clearly be seen from the format of the material tensor. This topic is discussed in
Section 6 in the context of the 7-parameter shell model.

1.3. Extension based on Hu±Washizu functional

It has been mentioned before, that the 6-parameter model ± although it already represents the full three-
dimensional stress and strain state ± needs an extension in the thickness direction in order to obtain sensible
results. Several authors (Parisch, 1993; Sansour, 1995) have realized this extension by adding a quadratic
term to the transverse displacement ®eld, thus increasing the total number of degrees of freedom per node
in a ®nite element discretization to 7 compared to 5 in a conventional, shear deformable shell formulation.

Motivated by the need to obtain a more e�cient formulation, B�uchter and Ramm (1992a) proposed a
di�erent procedure, namely to supplement the transverse normal strain E33 by a linear component b33 in
thickness direction (see Eqs. (10) and (13)). This is achieved with the help of the enhanced assumed strain
(EAS) method, originally introduced by Simo and Rifai (1990) to remove locking from low order plane
strain/stress ®nite elements. The additional strain component is related to a single parameter ~b � �h=2�b33,
describing a linear variation of the transverse normal stretch across the thickness. The method to introduce
this additional kinematic variable is derived from a version of the three-®eld variational functional of Hu±
Washizu, depending on displacements u, Green±Lagrange strains E and second Kirchho�±Piola stresses S.
Following the concept of Simo and Rifai (1990), the strains are reparametrized by

E � Eu � ~E; ~E � h
2

h3b33g3 
 g3; �1�

where Eu are the Ôcompatible strainsÕ obtained from the displacement ®eld, ~E are additional, enhanced
strains, for which independent trial functions can be chosen, g3 are the contravariant base vectors in the h3-
direction. Provided that a certain orthogonality condition holds, the stresses drop out of the variational
formulation and the remaining Hu±Washizu functional reads

~P�u; ~E� �
Z

V
W int�u; ~E�dV ÿ

Z
V

.b � udV ÿ
Z

AS

t̂ � udA � stat: �2�

Here W int�u, ~E� is the energy density, .b are the body forces and t̂ are the boundary tractions. V denotes the
volume of the shell body, AS the portion of its surface subjected to prescribed forces. In the functional (2), it
has already been taken into account, that the shape functions for the displacement ®eld satisfy the kine-
matic boundary conditions, which is necessary for variational consistency.

Apparently, the format of Eq. (2) resembles that of the principle of virtual work, except that W int�u, ~E�
depends not only on displacements u, but also on enhanced strains ~E. The additional strain parameters,
resulting from its discretization can be condensed on the element level, thus the number of degrees of
freedom is not increased on the structural level.

The EAS method is related to the method of incompatible modes (Taylor et al., 1976), which has already
been outlined in the original contribution by Simo and Rifai (1990). In fact, the enhanced strains could be
interpreted as being linked to an incompatible displacement ®eld that does not satisfy the kinematic
boundary conditions or the interelement continuity conditions, respectively. The approach of B�uchter and
Ramm (1992a) can thus be interpreted as the addition of an incompatible ®eld for the transverse dis-
placement, which is quadratic in thickness direction (see Section 3.1).

As the enhanced strains ~E represent the residuum of the kinematic equation, it is expected that they
vanish with mesh re®nement. However, in the case of the 7-parameter model, for which a transverse strain
component b33 is added, its vanishing would require re®nement in thickness direction, which is usually not
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carried out. Thus, the enhanced strains remain present even for arbitrary mesh density in surface direction.
This does, however, not a�ect consistency of the method, because of the sound variational basis. The fact,
that ~E does not tend to zero with mesh re®nement can be justi®ed, since a shell model is not expected to
represent exactly the three-dimensional continuum solution.

2. Model problem: two-dimensional beam with thickness change

Some of the mechanical phenomena occurring in shells, can in principle already be observed in a simple,
plane beam. This holds for the membrane and bending states with their corresponding stress resultants.
Only the twisting of the shell, corresponding to the torsion of a beam, is not present in a two-dimensional
beam model.

The two-dimensional beam can thus serve as a model problem to investigate the principal di�erences
between a formulation with and without thickness change. The advantage is that the mathematical for-
mulation is much simpler as in a shell formulation without losing the physical insight into the appearing
terms. The statements will afterwards be transferred to shells.

2.1. Kinematic assumptions for two-dimensional beam

For the two-dimensional beam formulation in curvilinear coordinates h1 denotes the direction of the
beamÕs center line and h3 (instead of h2, for an easier comparison to the shell equations) denotes the
transverse direction (Fig. 2). Therefore, Latin indices take the values 1 and 3, the same is valid when ap-
plying EinsteinÕs summation convention, e.g.

u � uig
i � u1g1 � u3g3; �3�

where gi are the contravariant base vectors.
The variational basis of the beam formulation is the Hu±Washizu principle Eq. (2).
A 5-parameter beam model (see Fig. 1 for classi®cations) is described through the following assumptions

for geometry:

Fig. 2. Kinematics of two-dimensional beam.
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x � r� h3a3; �4�
displacements

u � v� h3w �5�
and strains

b33 �
2

h
~b with h � thickness of beam: �6�

The degrees of freedom are the displacements v, di�erence displacements w, and the enhanced transverse
normal strain component ~b. Note that di�erence displacements are introduced as primary variables. Similar
to rotations, it keeps the formulation less prone to ill-conditioning if the structure is very thin.

The covariant base vectors of the beamÕs center line are given by

a1 � or

oh1
� r; 1 �7�

and a3. The covariant base vectors outside the beam axis can be expressed in terms of ai.

gi � x; i ) g1 � a1 � h3a3;1;
g3 � a3:

�
�8�

The curvilinear components of the Green±Lagrange strain tensor for arbitrarily large displacements and
strains Eij � Eu

ij � ~Eij are made up of the displacement dependent strains

Eu
ij � 1

2
�gi � u; j � gj � u; i � u; i � u; j� �9�

and the enhanced strains

~Eij � 0 for �i; j� 6� �3; 3�; ~E33 � h
2

h3b33 � h3 ~b: �10�

The components of the strain tensor depending on the displacements can be written in the following form:

Eu
11 � �a1 � h3a3;1� � �v; 1 � h3w; 1� � 1

2
�v; 1 � h3w; 1� � �v; 1 � h3w; 1�

� a1 � v1 � 1
2
v; 1 � v; 1 � h3�a1 � w; 1 � a3;1 � v; 1 � v; 1 � w; 1�

� �h3�2 a3;1 � w; 1

� � 1
2
w; 1 � w; 1

�
; �11�

Eu
13 � 1

2
�a1

� � h3a3;1� � w� a3 � �v; 1 � h3w; 1� � �v; 1 � h3w; 1� � w
�

� 1
2
�a1 � w� a3 � v; 1 � v; 1 � w� � 1

2
h3�a3;1 � w� a3 � w; 1 � w; 1 � w� � E31; �12�

Eu
33 � a3 � w� 1

2
w � w: �13�

For the transition from a two-dimensional to a one-dimensional description of the beam structure,
kinematic and static quantities are de®ned. The kinematic variables are ± as in the shell theory ± the
constant, linear and quadratic parts of the strain distribution in thickness direction.

Eij � aij � h
2

h3bij �
h2

4
�h3�2cij: �14�

The static variables aij, bij and cij are obtained as energetically conjugate quantities to the kinematic
variables. Here, the transformation of an in®nitesimal volume element
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l̂ � �g1 � g2� � g3

ja1 � a2j �15�

is usually approximated by l̂ � jg3j � h=2 in the de®nition of the material law. This assumption is also
introduced below in the shell formulation.

The resulting kinematic and static variables can be grouped into the ÔusualÕ terms, also appearing in a
classical, shear deformable 3-parameter beam formulation of Timoshenko type and additional, Ôhigher
orderÕ terms, resulting from the thickness stretch.

For simplicity, the following formulas are based on the assumption of an initially straight beam: Thus, a
cumbersome notation and the introduction of Christo�el symbols can be avoided because covariant de-
rivatives are identical to simple partial derivatives. The strain components then can be expressed in terms of
the components of the displacements and it holds:

ai � v � vi; ai � w � wi; a3;1 � 0: �16�

It should be emphasized that the straight beam assumption is only introduced to keep the mathematical
expressions as simple as possible and does not a�ect the general validity of the preceding equations. With
the abbreviation o���=oh1 � ���0, the following expressions are obtained. Underlined terms are due to
geometrically non-linear e�ects.

Usual kinematic and static variables

a11 � v01 �
1

2
��v01�2 � �v03�2�; n11 �

Z 1

ÿ1

S11 h
2

dh3; �17�

b11 �
2

h
�w01 � v01w01 � v03w03�; m11 �

Z 1

ÿ1

h3S11 h2

4
dh3; �18�

c11 �
2

h2
��w01�2 � �w03�2�; s11 �

Z 1

ÿ1

�h3�2S11 h3

8
dh3; �19�

a13 � 1

2
�w1 � v03 � v01w1 � v03w3�; n13 �

Z 1

ÿ1

S13 h
2

dh3 � n31: �20�

Additional kinematic and static variables due to two-dimensional extension

b13 �
1

h
�w03 � w01w1 � w03w3�; m13 �

Z 1

ÿ1

h3S13 h2

4
dh3; �21�

a33 � w3 � 1

2
�w2

1 � w2
3�; n33 �

Z 1

ÿ1

S33 h
2

dh3; �22�

b33 �
2

h
~b; m33 �

Z 1

ÿ1

h3S33 h2

4
dh3: �23�

The stress and strain terms quadratic in h3 are usually neglected because of their minor signi®cance in
most problems. However, in the analysis of relatively thick beams (or shells), for strong curvatures or in the
presence of large strains together with bending deformations, these strains can become important (B�uchter
et al., 1994).
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Neglecting c11 and s11 the internal energy can be expressed as

Pint �
Z
`

1

2
a11n11
� � b11m11 � 2�a13n13 � b13m13� � a33n33 � b33m33

�
dh1; �24�

where symmetry of the shear strains has been used.

2.2. Interpretation of kinematic and static variables of two-dimensional beam

2.2.1. Geometrically linear terms
The physical signi®cance of the kinematic quantities can easily be illustrated by the corresponding de-

formations of an in®nitesimal portion of the beam. For simplicity, for the time being only, the linear
contributions to the deformation are taken into account. The non-linear e�ects are discussed in the sub-
sequent section (Fig. 3).

The constant part of the strains a11 parallel to the axis of the beam describes its longitudinal extension
(membrane strains for shells), the linear part b11 its curvature. The corresponding stress resultants are the
normal force (Ômembrane forceÕ) n11 and the bending moment m11.

The transverse shear strain a13 is the last kinematic variable, that still appears in TimoshenkoÕs beam
theory. Already here an interesting remark can be made, which is usually not discussed when beam, plate or
shell theories are derived.

Due to symmetry usually a13n13 and a31n31 are combined to 2a13n13� cn13 with the shear deformation c.

a13n13 � a31n31 � �a13 � a31�n13 � cn13: �25�

With the de®nition of n13 according to Eq. (20) as the integral over the shear strains, acting in transverse
direction, in a cross-section orthogonal to the axis of the beam, the interpretation as a Ôtransverse shear
forceÕ suggests itself.

However, we could as well distinguish both parts and de®ne

Fig. 3. Kinematic variables of two-dimensional beam.
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n31 �
Z 1

ÿ1

S31 h
2

dh3 �26�

to express the corresponding part of the internal energy. The stresses S31, however, are not de®ned in the
cross-section of the beam, but act in h1-direction on faces parallel to the beamÕs axis. The interpretation as a
stress resultant is therefore not really correct for n31, because it is not a resultant force, but merely an
Ôintegral stress valueÕ. Consequently, the transverse shear force is not the energetically conjugate quantity to
the entire shear angle c, but only to a part of it.

The question for the physical meaning of this quantity may seem to be rather academic, because the
de®nition of c and n13 su�ces for the exact description of the internal energy. However, for the de®nition of
the static variables described below, it is a necessary distinction, because they also do not ®t into the usual
framework of stress resultants and kinematics of a beam. These remaining quantities result from the as-
sumption of a thickness change throughout deformation.

In Eq. (21), b13 and m13 are de®ned, which result from the linear distribution of the transverse shear
strains. In contrast to a13, b13 consists only of one part ��2=h�w03�, because u1;3 is constant in h3-direction,
whereas u3;1 contains a linear part. Nevertheless, the same argument can be used as for the linear part of the
transverse shear above. Also, here m31 could be de®ned independently as well.

Apart from this consideration, the question for the physical meaning of m13 remains. In Section 3.2, the
term transverse shear moment is introduced for that quantity, inspired by the fact that the corresponding
stresses vary linearly across the thickness. As for the bending moment m11, the resultant force is zero,
however, unlike m11, the ÔmomentÕ m13 (and also m31) does not lead to any resultant in the sense of a couple
of forces. The transverse shear moment therefore, does not participate in the global equilibrium. Never-
theless, it should not be omitted because it contributes to the internal energy of the beam.

For the case of the transverse normal force n33, the term Ôstress resultantÕ is also not appropriate. In
contrast to the transverse shear stresses, here no corresponding stresses exist in the cross-section of the
beam. The name Ôtransverse normal forceÕ takes into account that n33 is related to normal stresses, acting in
transverse direction. The physical unit identi®es n33 formally as a force, however, there is nothing like a
resulting force in transverse direction. The mechanical interpretation of the corresponding kinematic
quantity a33, however, can easily be given as thickness change of the beam.

The corresponding linear part b33 is the only kinematic variable, that does not result from the dis-
placements, but is introduced in this model as an independent degree of freedom within the enhanced
assumed strain technique. It is related to a linear varying thickness change of the beam. The introduction
of this term is necessary for an appropriate description of bending deformations together with non-
vanishing PoissonÕs ratio m. The energetically conjugate Ôtransverse momentÕ m33 represents the linear dis-
tribution of transverse normal strains across the thickness, multiplied with the thickness coordinate (see
Section 5.1).

2.2.2. Geometrically non-linear terms
Basically, the geometrically non-linear terms represent the e�ect of large strains and deformations within

a certain Ôdeformation modeÕ. For example, in the case of a11, the squares of the partial derivatives of the
displacements v1 and v3 are added (see Eq. (17)). They represent the e�ects of ®nite strains and rotations for
a ®ber parallel to the h1-direction, as indicated in the Ôone-dimensional truss analogyÕ in Fig. 4. Note that
this e�ect is related to the choice of the Green±Lagrange tensor as strain measure. If instead Biot strains
and stresses are used, the quadratic terms could be avoided. However, the choice of the strain measure is
also closely related to the given constitutive law.

In principle, these non-linear parts do not a�ect the graphical descriptions of the physical signi®cance of
the corresponding kinematic variables, they are therefore, not further discussed in the sequel.
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However, the components c11, corresponding to the part of the strain tensor, which is quadratic in h3 (see
Eq. (14)), are an exception, because no corresponding linear term exists. These components result from the
linear distribution in h3 of the displacements.

In Fig. 5 it is illustrated that this quadratic variation of E11 consists of two parts. The ®rst part �w01�2
accounts for the non-linear strain±displacement relation for the longitudinal stretching of a ®ber parallel to
the beamÕs center line. The indicated linear distribution of u1 belongs to a bending deformation of the beam.
Therefore, this part of c11 is already present in a 3-parameter Timoshenko model. The second part �w03�2
only appears in a formulation that takes into account a thickness change of the beam throughout defor-
mation. It considers the stretching of the same ®ber in the case of a thickness change varying in h1-direction,
which usually accompanies a ÔmembraneÕ type of deformation due to the Poisson e�ect. In a geometrically
linear theory, the terms cij vanish.

Fig. 4. Geometrically non-linear e�ects in the deformation of a single ®ber.

Fig. 5. Physical signi®cance of c11.
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2.3. Signi®cance of constitutive law

As in the three-dimensional shell model, here also an unmodi®ed, complete material law ought to be
applied. In isotropic elasticity, following a St. Venant±Kirchho� material law, this is the complete two-
dimensional stress±strain relationship for plane stress conditions S � C : E. It can be written in curvilinear
components

Sij � CijklEkl �27�
or in matrix form

S11

S33

S13

24 35 � E
1ÿv2

vE
1ÿv2 0

vE
1ÿv2

E
1ÿv2 0

0 0 E
2�1�v�

24 35 � E11

E33

2E13

24 35: �28�

The objective is to derive a relationship between kinematic and static variables without additional as-
sumptions, like the zero normal stresses S33 � 0 in thickness direction. To this end, the material law (27)
and the de®nition of the kinematic variables (14) are introduced into the de®nition for the integrated static
variables, Eqs. (17±23).

nij �
Z 1

ÿ1

Sij h
2

dh3 �
Z 1

ÿ1

Cijkl h
2

dh3akl � Dijklakl; �29�

mij �
Z 1

ÿ1

h3Sij h2

4
dh3 �

Z 1

ÿ1

�h3�2Cijkl h3

8
dh3bkl � D

ijkl
bkl: �30�

Thus, the components of the constitutive tensor D for the 5-parameter beam are obtained from pre-inte-
gration of C in thickness direction. For an initially ¯at beam it holds

Dijkl � hCijkl; D
ijkl � h3

12
Cijkl: �31�

From the matrix form, it can easily be seen, that the consequent derivation leads to a systematic and
consistent format of D.

n11

n33

n13

m11

m33

m13

26666664

37777775 �
EA

1ÿv2
vEA
1ÿv2 0 0 0 0

vEA
1ÿv2

EA
1ÿv2 0 0 0 0

0 0 GAq 0 0 0
0 0 0 EI

1ÿv2
vEI

1ÿv2 0
0 0 0 vEI

1ÿv2
EI

1ÿv2 0
0 0 0 0 0 GIq

26666664

37777775 �
a11

a33

2a13

b11

b33

2b13

26666664

37777775: �32�

As typical for beams, here also in the two-dimensional formulation, the cross-sectional area A and the
moment of inertia I have been introduced:

A � 1 � h; Aq � a � h; I � 1 � h3

12
; Iq � b � h

3

12
: �33�

Here, the ÔconventionalÕ shear correction factor a, has been applied only for the constant part of the
transverse shear strains a13 which is related to bending. The value of a � 5=6 which is usually chosen can be
derived from energetic considerations along with the quadratically varying shear strains across the thick-
ness. However, the linear part of the shear strains can also be modi®ed. A corresponding variation of the
shear stresses should be antisymmetric (as the linear one) and satisfy the static boundary conditions. This
re¯ection leads to the intuitive assumption of a cubic shear strain variation across the thickness. With the
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same considerations, used to obtain a � 5=6, the resulting shear correction factor turns out to be b � 7=10.
In Bischo� (1999), it is shown for shells, how the error with respect to the three-dimensional solution can be
remarkably reduced with the help of this Ôhigher orderÕ shear correction factor.

The constitutive law consists of two completely decoupled blocks of similar shape, re¯ecting also the
format of the two-dimensional material law. Of course, they now depend on the thickness of the beam,
namely on h in the constant part and on h3 in the linear one. It can be seen that, here also, membrane and
bending actions are decoupled at a material point for isotropic material laws. The vanishing terms within
the blocks result from the fact that the h1- and h3-directions are orthogonal.

It is essential, that these blocks are complete. If, for example, ~b would be omitted, an unbalance between
kinematic and static variables emerges: While the linear part b33 of the kinematic variables drops out, due
to PoissonÕs e�ect, m33 still shows up in the vector of static variables. This unbalance gives rise to non-
physical, ÔparasiticÕ, normal stresses in thickness direction, the reason for ÔPoisson thickness lockingÕ with
the consequence that pure continuum elements with a linear displacement ®eld across the thickness do not
work. The discussion of the requirement for completeness of the constitutive equations will be resumed in
Section 6.

2.4. Equilibrium equations

Some interesting details, coming along with the extension in two dimensions of the beam formulation (or
three dimensions for the shell theory), can be seen from the di�erential equations for static equilibrium.
Only for simplicity and without loss of generality, geometric linearity is assumed here.

n11
;1 � ÿn1; �34�

n13
;1 � ÿn3; �35�

m11
;1 ÿ

h
2

n13 � ÿm1; �36�

m13
;1 ÿ

h
2

n33 � ÿm3; �37�

m33 � 0: �38�
Here, ni denotes a distributed load in hi-direction, m1 stands for distributed moment loading. The load term
m3 can result from clamping e�ects, it causes stretching or compression of the beam in thickness direction
(see Fig. 14).

Apparently, the ®rst three equations are the usual equilibrium conditions, obtained from a Bernoulli
or Timoshenko type of beam model. The three unknowns, n11, n13 and m11 may be obtained from these
equations alone, i.e. a beam theory incorporating only these quantities is statically determinate in the in-
terior. Eqs. (37,38) are completely decoupled from these equations and involve only Ôself equilibratedÕ,
higher order static variables. Since only one equation is available for two extra unknowns (n33 and m13),
they cannot be determined simply from static equilibrium. Here, compatibility conditions have to be taken
into account, using material law and kinematic equations. Thus, the beam theory has become statically
indeterminate in the interior.

Furthermore, it is interesting to note that the last Euler Eq. (38) requires that the Ôtransverse momentÕ
m33 vanishes. This means, that the introduction of the extra strain parameter ~b removes ÔPoisson thickness
lockingÕ by explicitly setting the parasitic stresses to zero; in other words, the above mentioned unbalance
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between transverse normal stresses and strains is remedied. Here, two interesting remarks can be made, that
also correspond to the three-dimensional shell.

Firstly, the fact that m33� 0 in the continuous problem, regardless of loading and boundary conditions,
seems somewhat surprising. The result can be understood by ®rst realizing that the extra strain parameter ~b
does not appear in the kinematic boundary conditions of the underlying variational principle. It has been
said before, that the corresponding strains can be regarded as resulting from an incompatible displacement
®eld, which is not subject to any restriction, and consequently, forces cannot originate from a kinematic
constraint. Yet, the extra strain parameter does show up in the static boundary conditions, thus a loading in
this ÔdirectionÕ is theoretically possible within the continuous variational formulation. In the ®nite element
formulation, however, this is no longer given, because loads are applied on the structural level and ~b is
condensed on the element level.

Secondly, in a ®nite element formulation, Eq. (38) is satis®ed only in a weak sense, which means that
linearly varying transverse normal stresses appear for a ®nite number of elements and diminish with mesh
re®nement. It can, however, be observed that an in-plane discretization of ~b, which has the same order as
the displacement ®eld (e.g. quadratic distribution of ~b in a three-noded beam element) satis®es Eq. (38)
exactly for arbitrarily coarse meshes. This can be explained utilizing the analogy of the elements derived
either from Hu±Washizu principle or from Hellinger±Reissner principle (see Andel®nger and Ramm, 1993;
Bischo� et al., 1998). In fact, the above mentioned quadratic shape function for ~b is equivalent to a
Hellinger±Reissner based element, where the linear part of the transverse normal stresses is explicitly set to
zero.

3. 7-parameter shell formulation including thickness stretch

3.1. Shell formulation using assumptions for displacements and strains

In Fig. 6, the reference and current con®gurations of a shell structure are shown along with the position
vectors x and �x of an arbitrary material point, the corresponding displacement vector u and the covariant
base vectors ai of the mid-surface of the shell. Basically, the notation is identical in both con®gurations,
except that variables of the current con®guration are denoted by a bar.

Fig. 6. Geometry and kinematics of 7-parameter shell model.
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The description of the shell body is analogous to that of the above described beam formulation. The
position vector x of an arbitrary point of the shell can be expressed with the help of r and a3.

x � r� h3a3; x � r� h3a3: �39�
The covariant base vectors of the mid-surface of the shell (h3 � 0) are obtained from the partial de-

rivatives of the position vector r � x(h3 � 0)

aa � or

oha � r; a; aa � r; a: �40�

By de®nition, the director a3 is perpendicular to the mid-surface and has an initial length of h/2, where h is
the shell thickness.

a3 � h
2

a1 � a2

ja1 � a2j : �41�

The covariant base vectors of an arbitrary point in the shell body are given by

ga � x; a � aa � h3a3;a; g3 � x; 3 � a3: �42�
The displacement v of a point of the mid-surface together with the update of the director via the vector of
the di�erence displacements w

r � r� v; a3 � a3 � w �43�
renders an expression for the displacement u of an arbitrary point in the shell body.

u � xÿ x � r� v� h3�a3 � w� ÿ rÿ h3a3 � v� h3w: �44�
Thus, the 7-parameter shell formulation utilizes ®rst of all six degrees of freedom, evolving directly from the
linear displacement assumption in thickness direction. These are three displacements of the mid-surface vx,
vy and vz, and three di�erence displacements wx, wy and wz.

The pure displacement assumption is supplemented by a seventh degree of freedom, namely a linear
distribution of transverse normal strains (see Eq. (52) for a de®nition of bij)

b33 �
2

h
~b �45�

to avoid Poisson thickness locking. This extension is again realized with the help of the enhanced assumed
strain technique based upon the Hu±Washizu principle, as described in Section 1.3. The additional, linear
component of the transverse normal strain could alternatively be introduced via an incompatible, quadratic
distribution of the transverse displacement in thickness direction. For details concerning the mathematical
and numerical formulation of the 7-parameter shell formulation (B�uchter and Ramm, 1992a; Bischo� and
Ramm, 1997).

It is essential to realize that the extension to 7-parameters is generally necessary to ensure convergence to
the correct solution, i.e. asymptotical correctness for the limit h! 0. Although this extension is carried out
with the help of a typical technique of Ô®nite element technologyÕ, it is thus rather an extension of the
underlying shell formulation than one of ®nite elements.

3.2. Kinematic and static variables of the 7-parameter model

First of all, the 7-parameter model contains all strains and stress resultants appearing in a 5-parameter,
Reissner±Mindlin type model. Nevertheless, they are also described herein, in order to allow for a relation
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to the additional kinematic and static variables and to introduce a clear notation. As in the beam for-
mulation the displacements are assumed to vary linearly across the thickness (see Eq. (5)).

u � v� h3w: �46�
The components of the Green±Lagrange strain tensor consist of a part Eu

ij depending on the displacements
and the enhanced part, depending on the extra parameter ~b.

Eij � Eu
ij for �i; j� 6� �3; 3�; E33 � Eu

33 � h3 ~b; �47�

Eu
ij � 1

2
�gi � u; j � gj � u; i � u; i � u; j�: �48�

With Eq. (42), the strain components depending on the displacements can be expressed in terms of
quantities de®ned on the mid-surface of the shell.

Eu
ab � 1

2
�aa

� � h3a3;a� � �v; b � h3w; b� � �ab � h3a3;b� � �v; a � h3w; a�
� �v; a � h3w; a� � �v; b � h3w; b�

�
; �49�

Eu
a3 � 1

2
�aa

� � h3a3;a� � w� a3 � �v; a � h3w; a� � �v; a � h3w; a� � w
�
; �50�

Eu
33 � a3 � w� 1

2
w � w: �51�

They can be decomposed into constant, linear and quadratic terms with respect to h3.

Eij � aij � h
2

h3bij �
h2

4
�h3�2cij with h � thickness of shell: �52�

From Eqs. (46)±(48) we obtain kinematic variables of the 7-parameter shell model. For the same reasons as
in Section 2.1 the assumption of an initially ¯at shell, i.e. a plate, is introduced also here. Thus,

ai � v � vi; ai � w � wi; a3;a � 0: �53�
Again, this simpli®cation is only carried out to avoid the otherwise necessary cumbersome notation and
does not a�ect the validity of the 7-parameter model for general shells.

Following the above assumption, the strain components can be written as partial derivatives of the
displacement components. Note that summation convention applies in the case of repeated indices.

a11 � v1;1 � 1
2
vi;1vi;1; �54�

b11 �
2

h
�w1;1 � vi;1wi;1�; �55�

c11 �
2

h2
wi;1wi;1; �56�

a12 � 1
2
�v1;2 � v2;1 � vi;1vi;2� � a21; �57�

b12 �
1

h
�w1;2 � w2;1 � vi;1wi;2 � vi;2wi;1� � b21; �58�

c12 � 0 � c21; �59�

a22 � v2;2 � 1
2
vi;2vi;2; �60�
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b22 �
2

h
�w2;2 � vi;2wi;2�; �61�

c22 �
2

h2
�wi;2wi;2�; �62�

a13 � 1
2
�w1 � v3;1 � vi;1wi� � a31; �63�

b13 �
1

h
�w3;1 � wi;1wi� � b31; �64�

c13 � 0 � c31; �65�

a23 � 1
2
�w2 � v3;2 � vi;2wi� � a32; �66�

b23 �
1

h
�w3;2 � wi;2wi� � b32; �67�

c23 � c32 � 0; �68�

a33 � w3 � 1
2
wiwi; �69�

b33 �
2

h
~b; �70�

c33 � 0: �71�
The energetically conjugate static variables are de®ned as

nij �
Z 1

ÿ1

Sij h
2

dh3; mij �
Z 1

ÿ1

h3Sij h2

4
dh3; sij �

Z 1

ÿ1

�h3�2Sij h3

8
dh3: �72�

In Fig. 7, all kinematic and static variables are listed schematically. For simplicity, the graphs show the
deformation of a previously ¯at section of a ÔshellÕ. In addition to the information, which kinematic and
static quantity is related to which deformation, it is indicated whether the deformation belongs to the
membrane or the bending state of a shell.

Kinematic and static variables, are denoted in a strict scheme: Static quantities resulting from a constant
distribution in h3 of normal stresses are called normal forces, those resulting from a linear distribution are
moments. If the forces are based on shear stresses they are called shear forces. Consequently, the twisting
moment should then be designated as shear moment, however, we stick to the established term twisting
moment. If the underlying stresses are acting in thickness direction of the shell, the term ÔtransverseÕ is
added. Thus, the constant distributions of the transverse shear stresses lead to transverse shear forces, the
corresponding linear distributions yield the transverse shear moment. Finally, if the transverse normal
stresses are integrated they lead to a transverse normal force and a transverse moment.
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4. Signi®cance of kinematic quantities

4.1. Kinematic variables

All components aij, bij and cij, of the Green±Lagrange strain tensor E, arranged according to their
distribution in h3-direction, are the kinematic variables. Due to their varying physical signi®cance, it is
sensible to distinguish between quantities according to
· their distribution in thickness direction,
· the direction of the corresponding stresses and
· the plane, in which they are acting.

Fig. 7. Deformations, kinematic and static variables of the shell.
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It should be noted that the identi®cation of strains with equal indices Eii as Ônormal strainsÕ and those with
mixed indices Eij | (i 6� j) as Ôshear strainsÕ is only valid, if hi and hj are orthogonal. The names used here rely
on this supposition.

The constant parts of the strains parallel to the mid-surface of the shell aab describe the membrane
strains. Here, a11 and a22 are in-plane normal strains and a12 are in-plane shear strains. The linear com-
ponents b11 and b22 are the curvature changes, corresponding to bending, b12 is called the twisting of the
shell. The constant parts aa3 of the transverse shear strains are energetically conjugate to the transverse shear
forces. In 5-parameter shell models, these are the only quantities, where stresses in h3-direction show up. In
Kirchho�±Love type shell theories these strains are constrained.

The linear portions ba3 are only present in the 7-parameter shell model. From the graph of the corre-
sponding deformation (Fig. 8), it can be seen that these strains follow from a thickness change of the shell.

Apart from a direct loading on the surface, for example, by clamping, these strains can result from
membrane actions along with PoissonÕs e�ect. In regions with varying normal strains a11, a22, also varying
thickness changes occur, leading to deformations shown in Fig. 8. In the overview in Fig. 7, the transverse
shear curvature is therefore attributed to a membrane type of deformation.

The mechanical relevance of these strains for the load carrying behavior of shells is usually subordinate
and might be neglected. In the present formulation, it is taken into account, because it is needed for a fully
three-dimensional description of the strain state.

A quadratic component ca3 of the transverse shear strains cannot be described by the present type of a
7-parameter shell formulation, extended directly by a single strain parameter ~b. For pure displacement
models based on a quadratic variation of the transverse displacements, however, such components show
up. In this case, a shear correction factor is not necessary (R�ossle et al., 1999).

The constant part of the normal strains in thickness direction a33 again only appears in the 7-parameter
model. It is, however, implicitly present also in 3- and 5-parameter formulations as a dependent or sec-
ondary variable. In MindlinÕs (Mindlin, 1951) and Kirchho�Õs (Kirchho�, 1850) theories, it can be calcu-
lated from the assumption of vanishing normal stresses in thickness direction. The contradiction to the
assumption of an inextensible director () E33 � 0) again illustrates the heuristic nature of these models. In
ReissnerÕs theory (Reissner, 1944), the normal strains are also eliminated from the formulation, however,
there is no contradiction in this case, because Reissner started from a mixed functional, where the kinematic
equation does not have to be ful®lled in a strong sense. In addition, Reissner did not use the assumption of
vanishing stresses in thickness direction.

Like the linear part of the transverse shear strains, the transverse normal strains correspond to the
membrane state of the shell. They could as well result from clamping, surface loading and PoissonÕs e�ect.

The linear part of the transverse normal strains b33 is again related to bending. As in the two-dimen-
sional beam formulation, in the present 7-parameter model, this is the only strain component that does not

Fig. 8. Physical signi®cance of ba3.
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result from the displacement ®eld but is introduced directly as extra degree of freedom within a multi®eld
variational formulation.

The corresponding deformation of the shell can be described as a movement of its material center line
within the shell body in transverse direction (see Fig. 9). This deformation usually occurs only in connection
with bending; an external load which leads directly to this mode of deformation may be possible, but is not
realistic.

For pure bending, as denoted in Fig. 9, the lower ®bers are compressed in longitudinal direction and
therefore, stretched in perpendicular direction due to the Poisson e�ect. Fibers on the upper side of the mid-
plane show the opposite e�ect. In total the thickness of the shell remains unchanged, however, the mid-
plane moves within the shell body to the side where it is stretched.

Of course, for a PoissonÕs ratio m � 0, this e�ect is not present. For such materials a 6-parameter for-
mulation su�ces. In general, omission of the transverse curvature b33 leads to arti®cial sti�ening, called
ÔPoisson thickness lockingÕ in the present paper.

4.2. Kinematic boundary conditions

Kinematic boundary conditions can only be prescribed for the six displacement components of the 7-
parameter formulation. As already mentioned in Section 2.4, the seventh parameter is not subject to any
kinematic constraints, due to the underlying variational formulation. However, in a 7-parameter formu-
lation based on pure displacement assumptions, both a related load term and a kinematic boundary
condition can be de®ned. The consequence is, that in the present version of a 7-parameter model normal
strains in thickness direction can occur at a fully clamped edge of a shell. This could be interpreted as an
incompatible, relative displacement of the mid-surface with respect to the upper and lower faces of the shell
body. The same is valid, if the seventh parameter is introduced as an incompatible displacement, as it has
been proposed by Parisch (1993).

The boundary conditions for the displacement degrees of freedom vx, vy and vz have the same physical
meaning as in classical plate and shell models. Suppressing the components wx, wy and wz of the di�erence
vector, however, has a slightly di�erent e�ect compared to clamped boundary conditions constraining the
rotational degrees of freedom. This is visualized in Fig. 10 for the special case of a plate with its mid-surface
in the xy plane. Clamping the edge parallel to the y-axis is realized in a 7-parameter formulation sup-
pressing the x-component wx � 0 of the di�erence vector. In addition, a rotation around the x-axis may be
constrained by wy � 0 (Ôhard supportÕ). The drilling rotation around the z-axis, which is o�ered in certain

Fig. 9. Physical signi®cance of b33.
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shell formulations ± especially in commercial FE packages to facilitate easy combinations with beam ele-
ments or discretization of shells with intersections ± is not reproduced in the present formulation. Actually,
such drilling degrees of freedom are often introduced arti®cially with some extra drilling sti�ness or ad-
ditional variables depending on the neighboring displacement ®eld. There are also variationally sound
derivations of membrane and shell formulations using drilling degrees of freedom existing in the literature.
However, here also regularization parameters are needed, which can not always be identi®ed uniquely. For
a discussion of this topic see for example Ibrahimbegovic and Frey (1995).

The remaining sixth degree of freedom wz of the 7-parameter model describes the thickness change of the
shell. Thus, the choice has to be made, whether or not to suppress a thickness change, to ensure a proper
representation of the actual physical situation. For example, wz might be suppressed at the edge of a
concrete slab, monolithically connected to a wall, but it has to be left free at edges, that are clamped due to
symmetry conditions. The sixth degree of freedom also facilitates plane-strain calculations. In particular, it
is possible to apply this condition selectively in certain regions within the structure. Thus, it is possible to
approximately consider for example the e�ect of clamping tools in testing machines, which is impossible
with 3- or 5-parameter shell models.

By combination of boundary conditions for displacements and di�erence displacements, it is, in prin-
ciple, possible to model eccentric suspensions. For example, the condition

vz ÿ wz � 0 �73�
describes a support on the lower surface of the shell.

uz � vz � h3wz � vz � h3vz ) uz � 0 for h3 � ÿ1: �74�
This approximate description of three-dimensional e�ects is not possible when using shell models without
thickness change.

In the analysis of shells with intersections, it is often referred to the problem that two di�erent normals
and thus two directors exist at each point along the intersection. For shell formulations using a rotation
tensor, this leads to the problem of non-communicating rotational degrees of freedom and can, for ex-
ample, be remedied by introducing a drilling rotation along the director as sixth parameter. For Ôdegen-
eratedÕ shell models, either with ®ve or seven parameters, it is natural to use a common director at these
locations, as it would be the case for a corresponding mesh with three-dimensional ÔbrickÕ elements (Ahmad
et al., 1970). Thus, the problem of non-communicating degrees of freedom is circumvented in a simple and
elegant way. For a discussion of the error resulting from the fact that the director ®eld is not normal to the
shell surface (B�uchter and Ramm, 1992b). In the case of sharp intersections, it can be veri®ed at least
numerically that this approach produces similar or even better results than the methods with coupling of
rotational degrees of freedom (Bischo�, 1999).

Fig. 10. Geometric boundary conditions.
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5. Signi®cance of static quantities

5.1. Static variables

The original idea of Ôstress resultantsÕ in the development of beam, plate and shell theories was pre-
sumably not the formal process of pre-integration across the thickness, but the re¯ection that the forces and
moments in a cross section are directly related to equilibrium in a global sense. Yet, here the static variables
nij, mij and sij are derived by formal thickness integration, so that they are energetically conjugated to the
kinematic variables, de®ned in Section 4.1. As already mentioned, not all of these Ôintegrated stressesÕ can be
interpreted as forces or moments because the corresponding stresses do not always act in the cross-section
of the shell.

Integration of constant and linear components of Sab leads to membrane forces nab and moments mab,
respectively. The components sab, resulting from quadratic variation of the stresses Sab, are energetically
conjugate to the previously described kinematic variables cab (see Section 2.2.2). Physically, these static
variables can be interpreted as bi-moments (Fig. 11). Here, an analogy may be observed to a related e�ect,
occurring in warping torsion of thin-walled beams, where bi-moments occur due to warping of the cross-
section of the beam, however, not related to the geometric non-linearity.

Describing the related kinematic variables cab it has been stated, that these components are usually
neglected, due to their minor in¯uence on the structural behavior. The same is valid for the static variables
sab. For both cab and sab it can be said, that they are not mandatory for the desired completeness of the
three-dimensional formulation. The static variables sab are the only components in the present version,
which vanish within a geometrically linear formulation.

The integrals over the constant parts of the transverse shear stresses Sa3 represent the transverse shear
forces na3. Within a 5-parameter formulation, these are the only stresses acting in h3-direction. Although in
a 7-parameter formulation additional static variables appear, where the corresponding stresses act in
thickness direction, the transverse shear forces remain as the only resulting forces in thickness direction in a
cross-section of the shell. This is due to the fact that the resultant forces of the remaining static variables
(e.g. ma3) either vanish, which means that they are self-equilibrated, or do not act in a cross-section (as e.g.
n33).

The integrals of the linear parts of the transverse shear stresses have been called transverse shear moments
ma3 in Fig. 7. They only appear in the 7-parameter formulation. The term ÔmomentÕ has been chosen,
because the related stress distribution is linear in h3, as in the case of a bending or twisting moment. As in
the two-dimensional beam the stresses, corresponding to ma3, are Ôself-equilibratedÕ, the resulting ÔmomentÕ
in the sense of a couple of forces, is zero (Fig. 12). If they arise from geometric or static boundary con-
ditions, they only have a local in¯uence on the structural behavior, because of St. VenantÕs principle. The
transverse shear moments do not contribute to the satisfaction of global equilibrium.

Fig. 11. Physical signi®cance of sab.
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The quadratic components of the transverse shear stresses are again zero (sa3 � 0), as in the two-
dimensional beam formulation.

This ends the discussion of stresses acting in a cross-section. The remaining static variables correspond to
transverse normal stresses S33. As already mentioned in the discussion of the two-dimensional beam model
problem, these are neither real forces nor do they show up in a section perpendicular to the shell. Nev-
ertheless, the consideration of these integrated stresses is essential, because they contribute to the internal
energy of the shell structure and represent the e�ect of transverse normal stresses in the shell.

The constant component in h3, the transverse normal force n33, is related to normal stresses that evolve
when the shell is stretched or compressed in thickness direction.

n33 � S33h; �75�

where h is the thickness of the shell. The unit (kN/m) of n33 is derived from (kN/m2) (stress S33) and (m)
(thickness h). A simple physical interpretation of such a variable is not easy to ®nd. If we intellectually
reduce the three-dimensional problem to a one-dimensional model in thickness direction, n33 is identical to
the force P in a truss, multiplied with itÕs length `. Given an elongation D` of the truss, we have

D` � P`
EA

() P` � EAD` � EA
Z `

0

edx �
Z `

0

Pdx �: n33: �76�

Obviously, n33 relates to P (or S33, in general), like D` to e (or E33, respectively). Thus, the transverse normal
force might be designated as an Ôamount of stressÕ in the structure, the value n33 results from ÔsqueezingÕ the
stresses along h onto one single point (Fig. 13).

It is interesting to remark that the energetically conjugate strain a33 is, in contrast to that, easily ac-
cessible for a mechanical interpretation. It corresponds, most simply, to the thickness stretch of the shell at
a certain point.

Fig. 12. Physical signi®cance of na3 and ma3.

Fig. 13. Physical signi®cance of n33 and m33.
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For the transverse moment m33 in principle the same could be said. Also, here the term ÔmomentÕ can only
be justi®ed by the systematic scheme introduced at the beginning of Section 3.2. A physical interpretation of
m33 is probably indirectly possible with the help of the corresponding deformation. While the transverse
normal force tends to stretch or compress the shell entirely in thickness direction, the transverse moment
tries to elongate the upper part while it shortens the lower, or vice versa.

5.2. Static boundary conditions and loading

In contrast to what has been said in Section 4.2 for the geometric boundary conditions, in the case of the
static boundary conditions, it is possible to prescribe values for the stress resultants, corresponding to the
enhanced strains. In a ®nite element formulation, however, loads are de®ned on the structural level, i.e.
after assembly of the global sti�ness matrix. Since the enhanced strain parameters are eliminated on the
element level, their related load terms are no longer present on the structural level.

Since static boundary conditions and loading in the domain have the same e�ect in a ®nite element
analysis, only the domain terms are discussed in the following.

Most loads on shell structures ± apart from volume loads ± result from contact with other media on its
top or bottom faces. In a two-dimensional model of shells, these loads are assumed to act upon its mid-
surface, whereas in a 7-parameter formulation a more realistic load application can be modeled (Ramm
et al., 1995). To illustrate this possibility, the domain term of the load is decomposed into components.Z

V
b � dudV �

Z
A

nadva

� � n3dv3 � madwa � m3dw3

�
dA: �77�

The components acting in-plane na do not di�er from that in classical shell formulations, the same is true
for the transverse loading n3 on the mid-surface of the shell. A distributed moment load ma is mostly not
taken into account, it can, however, be considered for 3- and 5-parameter shell models. It could possi-
bly evolve from eccentric tangential forces, for example from exterior facades. Whereas, in a 5-parameter
formulation, this moment is directly related to the rotational degrees of freedom, in the 7-parameter model;
it corresponds to a component of the di�erence vector, parallel to the mid-surface of the shell. The resulting
moment load follows as a couple of forces and depends on the shell thickness (see Fig. 14).

Finally, a fourth term m3 may appear, consisting of two opposite, self-equilibrated loads, acting per-
pendicular to the shell surfaces. A combination of n3 and m3 can be used to model transverse loads acting
upon the upper or lower surface of the shell (Ramm et al., 1995). Although this model leads to a slight
improvement, it is still a rough approximation of the load application, which cannot serve as a substitute
for a detailed analysis of the three-dimensional stress and strain state.

Fig. 14. Loading of di�erence vector components ± surface loading.
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In Fig. 14, the hollow arrow for the load terms ma and m3 on the lower side of the shell illustrates the
fact, that loading of a component of the di�erence vector always results in a couple of forces in opposite
directions. In a simulation of surface loads, this fact may be exploited to produce an ÔeccentricityÕ of na or
n3.

6. Signi®cance of material law

It has been mentioned previously that the use of complete three-dimensional material laws is one of the
basic motivations for the development of the present shell model (B�uchter and Ramm, 1992a). The de®-
nition of the material tensor does not require any assumption or modi®cation for the transition from three
to two dimensions. The unmodi®ed, three-dimensional material tensor is simply integrated in thickness
direction to obtain a constitutive relation between ÔintegratedÕ kinematic and static variables (replacing that
of strains and stresses).

In a ®nite element formulation this Ôpre-integrationÕ is usually done numerically, in particular for het-
erogeneous materials or materially non-linear responses. In order to be able to discuss the mechanical
signi®cance of the single components, in this Section the components of a material tensor for a linear
elastic, isotropic, homogeneous material law is derived explicitly. The derived conclusions can be gener-
alized in the sense that for other materials values in the matrix may change and additional coupling terms
can evolve, but their physical meaning basically remains.

The derivation of the ÔintegratedÕ constitutive relation is, in principle, the same as the one used for the
two-dimensional beam. Starting point is the complete three-dimensional stress±strain relation for a linear
elastic material law for small strains. As in the previous Sections, terms like ÔshearÕ or ÔtensionÕ rely on the
presumption, that h1- and h2-directions be orthogonal.

Sij � kEkkdij � 2lEij �78�
with the Lam�e constants

k � Ev
�1� v��1ÿ 2v� ; l � G � E

2�1� v� : �79�

The material law can be cast in the following matrix form.

S11

S22

S33

S12

S13

S23

26666664

37777775 �
k
v

1ÿ v v v 0 0 0
v 1ÿ v v 0 0 0
v v 1ÿ v 0 0 0
0 0 0 1ÿ2v

2
0 0

0 0 0 0 1ÿ2v
2

0
0 0 0 0 0 1ÿ2v

2

26666664

37777775 �
E11

E22

E33

2E12

2E13

2E23

26666664

37777775: �80�

Its structure ± as in the two-dimensional beam ± will be reproduced in the constitutive law for the shell. The
underlying de®nitions of the components of the three-dimensional material tensor

Cijkl � Ev
�1� v��1ÿ 2v� g

ijgkl � E
2�1� v� gikgjl

� � gilgkj
� �81�

simpli®es with the assumption of an orthogonal basis (i.e. a ¯at shell), because then gij� dij. For pre-
integration across the thickness, the terms correlated with cij (Eq. (52)) and sij (Eq. (72)) are omitted for
simplicity (see Section 2.2.2); beside this the assumption l̂ � h=2 is adopted (see Section 2.1). The com-
ponents of the constitutive tensor are then
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Dijkl
K �

Z 1

ÿ1

�h3�KCijkl h
2

� ��K�1�
dh3; K 2 f0; 1; 2g: �82�

With the abbreviations (a and b are the shear correction factors)

E � E�1ÿ v�
�1� v��1ÿ 2v� ; hq � a � h; h � h3

12
; hq � b � h; �83�

the material law of the 7-parameter shell formulation gets the following form:

n11

n22

n33

n12

n13

n23

m11

m22

m33

m12

m13

m23

26666666666666666664

37777777777777777775

�

Eh kh kh 0 0 0 0 0 0 0 0 0
kh Eh kh 0 0 0 0 0 0 0 0 0
kh kh Eh 0 0 0 0 0 0 0 0 0
0 0 0 Gh 0 0 0 0 0 0 0 0
0 0 0 0 Ghq 0 0 0 0 0 0 0
0 0 0 0 0 Ghq 0 0 0 0 0 0
0 0 0 0 0 0 Eh kh kh 0 0 0
0 0 0 0 0 0 kh Eh kh 0 0 0
0 0 0 0 0 0 kh kh Eh 0 0 0
0 0 0 0 0 0 0 0 0 Gh 0 0
0 0 0 0 0 0 0 0 0 0 Ghq 0
0 0 0 0 0 0 0 0 0 0 0 Ghq

26666666666666666664

37777777777777777775

�

a11

a22

a33

2a12

2a13

2a23

b11

b22

b33

2b12

2b13

2b23

26666666666666666664

37777777777777777775

: �84�

As in the above described two-dimensional beam formulation with thickness change, the format of the
original material law is re¯ected in Eq. (84). It consists of two completely decoupled blocks that only di�er
in the contribution of the shell thickness h, namely h for the constant stress components and h � h3=12 for
the linear ones.

The introduction of the shear correction factors a and b may seem a contradiction to the use of un-
modi®ed constitutive laws. This is, however, not the case. Omission of a and b would not remove the as-
ymptotic correctness of the shell formulation (i.e. convergence towards the three-dimensional solution for
h! 0), but only reduce accuracy for ®nite thickness.

The decisive fact in Eq. (84) is that there is a certain ÔbalanceÕ between kinematic and static values. Each
of the kinematic variables has its counterpart in the vector of static variables. Again, when ~b is omitted the
linear part of the transverse normal strains vanishes, while the equivalent static variable m33 is still present.
This unbalance results in parasitic stresses in thickness direction leading to a de®cient shell formulation.
Since this unbalance between static and kinematic variables is the typical characteristic of locking phe-
nomena this is also called ÔPoisson thickness lockingÕ.

6.1. `Completeness' of shell formulations using three-dimensional material laws

We have learned that the 7-parameter shell formulation takes into account exactly the constant and
linear variations in h3 of all strain and stress components. For isotropic material laws additional terms, like
a quadratic distribution of transverse shear strains might re®ne the model behavior and improve accuracy
of the results. In contrast to that, for general anisotropic material laws, it is not sensible to supplement the
formulation by only particular components of the full set of strains and stresses, rather than the full set. The
overall coupling of all stress and strain terms of the same order due to the general anisotropy could result in
parasitic stresses and thus in an arti®cial constraint. Anyway, for a shell theory, which ought to describe
only membrane and bending e�ects, such an extension is not necessary. To sum up, one can say that, having
in mind the requirement to be able to apply arbitrary constitutive laws, only a complete linear, quadratic,
cubic, etc. distribution of the stress±strain state seems to be sensible.
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At the same time, this means that the 7-parameter formulation, in the special form proposed by B�uchter
and Ramm (1992a) is the version of a three-dimensional, shear deformable shell theory with the lowest
possible e�ort regarding the number of degrees of freedom involved.

Libai and Simmonds (1998) support the view that the Kirchho� theory needs to be derived from con-
stitutive assumptions alone and not from a priori kinematic assumptions, which is usually done. With the
help of a certain construction of the constitutive law of the shell, it is possible to eliminate the terms, that
should not produce energy (for example transverse normal strains and stresses). This point of view is closely
related to the Ôplane stressÕ assumption used by Koiter (1960) in the sense that only stresses acting within a
certain plane are taken into account, while de®ning the internal energy. Thus, transverse shear and normal
stresses and strains might be present, but their contribution to the internal energy is considered negligible.
Actually, Koiter (1960) intended with that kind of assumption to overcome the requirement of vanishing
transverse normal strains and stresses, which is obviously contradictory.

The idea of Libai and Simmonds (1998) can easily be understood by looking at the constitutive law of
the three-dimensional shell, Eq. (84). Suppose the vectors of kinematic and static variables would contain
also the quadratic terms cij and sij, respectively, whereas the corresponding terms in the material matrix are
zero. Then, the additional kinematic variables cij do not contribute to the potential energy, and conse-
quently, the actual order of the theory is not in¯uenced. This, in turn, means that the order of approxi-
mation is driven by the material law alone, regardless of the underlying kinematic assumptions.

7. Conclusions

In the present paper, a physical or mechanical, rather than a mathematical approach to the under-
standing of a higher order shell formulation has been provided. It has been discussed how higher order
kinematic and static variables can be interpreted from an engineering point of view, and how they in¯uence
the accuracy of the shell model. It turned out, that the conventional association of the static variables with
Ôstress resultantÕ forces and moments is not possible for some of the higher order static variables.

Obviously, the Ôstep back into three dimensionsÕ in shell analysis is realized predominantly by intro-
ducing a thickness stretch of the shell as independent variable. However, care has to be taken while
choosing the stress and strain terms to be involved in order to avoid arti®cial sti�ening e�ects. Here, it could
be demonstrated that the format of the constitutive tensor, obtained by pre-integration of the three-
dimensional material law across the thickness, plays a crucial role. It is stated, that it should always contain
the full set of three-dimensional stresses and strains for each order in the thickness coordinate. For a theory
including membrane and bending e�ects, like the 7-parameter theory discussed herein, this is the order one.

The study con®rms that the 7-parameter shell formulation, initially proposed by B�uchter and Ramm
(1992a), and adopted later on by others (see e.g. Betsch et al., 1996; Eberlein and Wriggers, 1997) can be
regarded as the lowest possible shear deformable shell model, which is able to handle arbitrary three-
dimensional constitutive laws.

For an e�cient numerical treatment of the shell equations with the ®nite element method, and numerical
examples, including hyperelasticity and elasto-plasticity for large strains the reader is referred to B�uchter
et al. (1994) as well as Bischo� and Ramm (1997).
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